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INTRODUCTION

Let V be a real linear space, X a real normed linear space, 4 : V' — X a
linear transformation, and b a fixed vector in X. We assume that the equation

Ar == b
has no solution and that it is of interest to determine a vector ¢ ¢ V" such that

P h— ATy 2 b — Av|

for all v € V. We shall call this the primal problem. In absence of further
assumptions, the primal problem need not have a solution; and in cases
where a solution exists, it need not be unique. An argument of James given in
Phelps [4] shows that a space S is reflexive if and only if for each
closed subspace E and each xe S, there is a vector ye £ such that
ix —yll << |lx — z| for all ze E. Thus, when A has a closed range and X
1s reflexive, the primal problem has at least one solution. It is known {2] that
a Banach space S is rotund (strictly convex) and reflexive if and only if for
each closed, convex set K C S and each x € §, there is a unique vector ye K
such that || x — 3| << |l x — z il for all z e K. It follows that if 4 is [-1 with
a closed range and X is rotund and reflexive, then the primal problem has a
unigue solution. We shall assume throughout this paper that these conditions
are satisfied.

An important special case of the primal problem occurs when V' = R,
X = Rmand A4 is an m x n matrix for which m > n and rank (4) = n.
If X has the /? norm, where 1 < p < oo, then the primal problem becomes
the /”-problem for overdetermined systems of linear equations (see [3, 6]).
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In Section I a dual problem is defined whose solution can be used to solve
the primal problem. The remaining sections develop an algorithm for solving
this dual problem under the assumption that the range of 4 has finite
codimension. This restrictive condition is satisfied by many operators of
interest. In particular, if U is & compact operator on a Banach space. then
I — U has a range with finite codimension. More generally. any Fredholm
operator has this property (see [3]). Many of the ideas in this paper were
motivated by the work of V. P. Sreedharan appeuaring in [6].

i. THe Duatl ProsLem

Throughout this paper we shall adhere to the following notation. X*
denotes the dual space of X, S designates the set {xe X : |l x = —= [}, and $*
is the corresponding set in X*. If f'e X* and x ¢ X, then {x, f - denotes f(x).
The range of A will be written as R(A). and for M C X we will designate the
set {fe X*:x,f> =0 for all xe M| by M . Similarly, if M C X* then
M+t ={xeX:<{x,f =O0forall feM;

By the dual problem: we will mean: Determine fe R(A)- n $* such that
<b,f> = (b, [ for all fe R(A)' N S*. It is known that the dual problem
always has a solution and that

inf{ih — Avi:ve V! = max{<h, f 1 fe R(A)y N S*

(see, e.g., [1]). This common value will be denoted by p and since A - b has
no solution, we have p > 0. In the event that X* is rotund, the dual problem
has a unique solution.

DERINITION 1. If fe X* - {0}, then x & X N S'is called a dual vector for f
if <x,f> =171".

DEFINITION 2. If xe X — {0}, then fe X* n S* is called a dual functional
SJor xif {x.f5 =1 x|

THEOREM [.1.

(i) If X is reflexive and fe X* - {0}, then there is at least one dual
vector for - If, in addition, X is rotund. then the dual vector is unique.

(i) If X is reflexive and X* is rotund. then for each x € X — {0}, there
is a unique dual functional for x.

Proof. These are standard results and can be found, e.g., in [7].
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When a unique dual vector for fe X* — {0} exists, we denote it by /™.
Similarly, x* denotes the unique dual functional for xe X — {0} when it
exists.

THeEOREM 1.2 Let X be rotund and reflexive, and suppose that A : V — X
is 1-1 and has a closed range. If | is any solution to the dual problem, then

(i) Av==b—<b.f - f* has a unique solution for v.

(1)  This solution is the solution to the primal problem.

Proof. (i) We show first that b — (hof f e R(A). Let g€ R(A)*, let
7 be the solution to the primal problem, and let

b - AT
h AT

-
Then
N R A S I EVAN S
b — A g — b f g
= plw.g —plf*g
=piw—[f*g
Letting ¢ — f gives
0="Ch—<hbfof*fo= plw—f*f
Therefore
Qoo fr = =T
By uniqueness of the dual vector for f. we obtain w = f*, so that

h— b f>f* g =0 for all g € R(A)*

and consequently b — ¢b. f- * & R(A). The uniqueness will follow from the
uniqueness of solutions to the primal problem once part (ii) is proved.

(i) 1f 1, is any solution to Av = b — (b f> f*

TAvy — b = Kb [ f* - b=

so that ¢, is a solution to the primal problem.
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2. STATEMENT OF THE ALGORITHM

it follows from Theorem 1.2 that once a solution f to the dual problem is
found, the solution to the primal problem cun be obtained by computing

AN — <h f [

In this section we give an algorithm for solving the dual problem under the
assumption that R(A4) has finite codimension, and both X and X™* are uni-
formly rotund (uniformiy convex). This algorithm is, in general, infinite and
generates a sequence (f,) which converges strongly to the solution of the
dual problem.

DeriniTION 2.1, I W is any finite dimensional subspace of X* having
basis B == {g, , &1 +.... &xn!» then the projection of' X onto W relative to B is the
linear transformation £ : X -> W defined by

Flxy =Y xog g
i1

Note that F(x) == 0 if and only if x& W+ Also, in the case where X is a
Hilbert space (so that X can be identified with X*) and {g, ,..., g.} 1§ an
orthonormal basis for W, the mapping F is the orthogonal projection of X
onto W and does not depend on the orthonormal basis chosen.

We are now in a position to state the algorithm. Both the proof of
convergence and the verification that the steps in the algorithm can always be
carried out will be established in the next section.

THEOREM 2.1. If X and X* are uniformly rotund and R(A) has finite
codimension, then the jollowing algorithm yields a solution to the dual problem
in a finite number of steps or else generates a sequence (f;) which converges
strongly to the solution of the dual problem.

Step (0): Select a fixed basis B = {g1 s &s »eer g} Jor W= IR(AU b} and
let F be the projection of X onto W relative 10 B.

Step (1) Choose fy € R(AY" such that | fyil == | and <b. [, - 0.
Step (2): Set i =0
Step (3): Compute h; = F(f;*)

Step (4): If h, == 0, then stop since f; is the solution of the dual problem. If
h; = 0, go to Step (5).
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Step (3): Determine w; such that | f; — ~ ;i < | fi — A for all A

Step (6 Set fi.y == \f; — ~h3 i - ody 8, dncrease i by |, and return to
Step (3).

3. CONVERGENCE OF THE ALGORITHM

Throughout this section we assume that X and X* are uniformly rotund
and R(A) has finite codimension. (We note that some relaxation of the
rotundity conditions is possible in some of the lemmas of this section although
we have no need for the added generality here.)

LiviMa 3.1, If fe R(A)- N S*. b, f: = 0. and F: X - {R(A) U b} isa
projection with respect to any basis B for { R(A) U b}, then fis a solution of the
dual probleni if and only if F(f *) = 0.

Proof. IfF(f*) = 0, then f* € lin{R(4) U b} sothat f* . Ar - abfor
some ¢ € V and real number x. Therefore.
foom (R = VA b oab f o= x{b ]
Thus.
f* = Av - bjib. [ .

For every g & R(A)" N .S* we have

D= g = K f= ol = JAv 4 (b[<b.f ). 8>
b, gs [ b, f .
Therefore, <b,f =2 Kb, g for any g R(4) N S* so that f is a solution
of the dual problem.

Conversely, assume f is the solution of the dual problem. By Theorem 1.2,
there is a ¢ € J7 such that

Ab == b~ b fo [
[t follows that
0 =2 F(AT) = F(b) — <b [ F(f*) = <bof o (FFY)
so that F(f*) == 0.

Lemma 3.2. If f and h are linearly independent functionals inn X*, then
fiT N — M for all veal X if and only if < f*, I = Q.
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Proof. Assume < f* i -= 0. Then
=S Feof—=Ao = Al

for all real A. Conversely, assume that for all real A we have [ A
It follows from the Hahn-Banach theorem that there is a linear functional
L e X** such that L(h) == 0. L(f) = [/ and | L' — 1. Since uniform
rotundity implies reflexivity. there is a vector y € X such that L(-) = <y, -

Therefore <y, f> -7 /% and 'y = |. By uniqueness of the dual vector

forfiv — f* ThusO = L(h)y — f* h.

LeMMA 330 Assume fe R(A) N S*, b} Oand F: X »{R(A)YU h,-
is a projection with respect to any basis B for {1R(AY W by Ifh = F(f*) = 0.
then there is a unique real number x 0 such that

O - if— il = m\in =Moo« L

Further, ~ is the unique solution of  (f — «t)*, h: = 0.

Proof. The existence of « is clear and the uniqueness follows from the
rotundity of X*. We show next that /i and f are linearly independent. if
kif = ki = 0 then

0= “holyf ~kohy = kb, f o

The independence is a consequence of the facts 7b,f - > 0and /i - F(f*) ~ 0.
It now follows that

0« f—ahi= m‘in VARSIV, E L R A R
We show next that | f— oty <2 L IE 1 == 1 f )< 1 f— A for all AL it
follows from Lemma 3.2 that </ *, /> = 0.

Therefore,
Y AN VA PR WYL s
i=1
This implies

h=F(f*) =Y {(f*g>g =0
i1

which is a contradiction, so that || f — ohij] < 1.
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Since <f*, /v = 0 it follows that the minimizing « must be positive since
el e LR — b
SR e
R
Further, it follows from Lemma 3.2 and the fact:| f — ahl| = (f — xh) — Al
for all A that ~ is the unique solution of /(f — xy*, h> = 0.

LEmva 3.4, [ (f)) is anv sequence in S* such that = f; — 71— 0, then
BV PR S V)

Proof.  We show first that f;* — f* weakly. Due to the weak sequential
compactness of the closed unit ball in .Y, it suffices to show that every weakly
convergent subsequence of (f;*) converges weakly to f*. Let (/') be any
weakly convergent subsequence of ( f;*) and assume (f;*) converges weakly
to z. We have !

2 o IR A RS DU N N R G S
N T SR A

Taking the limit as m — ¢ vields

ofr =1
But /;* -5 zimplies iz - . I so that
I VAR ED
Thus {75 -= 1, and by uniqueness of the dual vector, z = f*.

Since | f,* 1 - !f 1 and f,* —Z> f*_ it follows from the uniform rotundity
of X thatyf,* — f*4-»0(see,e.g. |7, p. 111, problem 9)).
We are now in a position to prove the main result, Theorem 2.1.

Proof of Theorem 2.1.

Case 1 (The algorithm does not terminate). Let p;, = <&, fi>. Since
fie R(AY-nS*, i =1, 2,.... we have

pr = (b fi = b Avf> < b — Avl s p

for all v < V. From the Lemma 3.3 and the fact that p, = <b, f;> > 0, we
have

pic1 — p = b [ — b, f
= (/1 fi — ) — Db, fi
== 0.
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Since (p,) is & monotone sequence bounded above by p. there is a real number
o such that

i{m pi a wop.

We now show that ¢ = p. Assume o = p.

Since (f;) is a bounded sequence in the finite dimensional subspace R(A)'.
we can pick a subsequence (f,, ) converging strongly to a functional fe X*.
Since Fis 4 continuous linear transformation, we have by Lemma 3.4 that
(f1,, ) converges strongly to h — F(f*). If h 0. then by Lemma 3.1. fis a

solution of the dual problem so that

o= limp, — hm<b, [, b.f p
irr ? s : ! h
which is a contradiction. If # = 0, let{ /1 d - 0. For i sutliciently large
we have 'l /1, - df2. Therefore,
I ’ ;}Afw, 1\,,,,’_/1,,,,1 YN /Im, I
so that
0« w, - 4

I3
for 7 sufficiently large. By passing to a subsequence, if necessary, we can
assume +,, converges to a real number &, Since

i./ll/l' ) \m,hm,é ; !.f‘m, /\/Im,

for all A and
Pm,://Pm, [ 1,/1/:, \m,/’m,

we obtain

R B 11V N R N BN AN/ RER AP §

for all A. Since it = 0, fand /i are linearly independent so that - / *. & - O by
Lemma 3.2. It follows that /i <= 0, which is a contradiction. Thus o — p.

Suppose now that (f,, ) is any strongly convergent subsequence of (f;).
andlet f = lim,,, Ju, - Since | f| = lLand ‘b, f = p.it follows that f'is the
unique solution f to the dual problem. Since f is the only strong cluster point
for the bounded sequence (f;), we have lim, ., 'f, - f - 0.

Case 11 (The algorithm terminates). Suppose the algorithm terminates
at the ith step, i.e., F(f;*) = 0. Asin Case I,

0 < Po <. P < <l p, b,f, .

By Lemma 3.1, f; is a solution of the dual problem.
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We conclude by noting that the functional f; required to start the algorithm
can be obtained by selecting any basis for R(4)" (an extension of the basis B
in Step (0) is the logical choice) and projecting f,* onto R(A)* relative to this
basis.

REFERENCES

I. R. C. Buck, Applications of duality in approximation theory, Approximation of
Functions, pp. 27-42, Elsevier, Amsterdam, 1965.

. D. F. Cubia, Rotundity, pp. 73-97 in Convexity, Proceedings of the Seventh Symposium
in Pure Mathematics of the American Mathematical Society, Providence, Rhode
Island, 1963.

3. S. LaNG, ““Analysis I1,”" Addison Wesley, Reading, MA, 1969.

4. R. R. PueLps, Uniqueness of Hahn—Banach extensions and unique best approximation,

Trans. Amer. Math. Soc. 95 (1960), 238-255.

5. J. R. Rice anp K. H. Usow, The Lawson algorithm and extensions, Math. Comp.,
22 (1968), 118-127.

6. V. P. SREEDHARAN, Least square algorithms for finding solutions of overdetermined
linear equations which minimize error in an abstract norm, Numer. Math. 17 (1971),
387-401.

7. A. WiLaNsKY, “Functional Analysis,” Blaisdell, New York, 1964,

]



